A finite element method for the Sivashinsky equation
نویسندگان
چکیده
منابع مشابه
High–order Finite Element Methods for the Kuramoto–sivashinsky Equation
Résumé. Nous considérons l’équation de Kuramoto–Sivashinskymunie de conditions aux limites périodiques et d’une donnée initiale. Nous l’approchons en utilisant une méthode d’éléments finis de type Galerkin pour la discrétisation en espace, et un schéma de Runge–Kutta implicite pour la discrétisation en temps. Nous obtenons des estimations d’erreur optimales et discutons de la linéarisation de c...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملA Multiscale Finite Element Method for the Fokker Planck Equation
In a recent paper, the authors developed the framework for multi-scale finite element methods for the solution of the multi-dimensional Fokker-Planck equation in stochastic structural dynamics. The Fokker-Planck equation governs the evolution of the transition probability density function of the response of a broad class of dynamical systems driven by Gaussian noise, and completely describes th...
متن کاملA space-time finite element method for the wave equation*
where n is a bounded open domain in R d with d ffi 1, 2 and T > 0. We have restricted our attention to a specific problem entirely to keep the presentation simple. Our results apply to considerably more general second-order hyperbolic problems. Typically an approximation to (1) is found by first discretizing in space to obtain the semidiscrete problem that consists of ordinary differential equa...
متن کاملApplication of He's homotopy perturbation method for solving Sivashinsky equation
In this paper, the solution of the evolutionaryfourth-order in space, Sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{HPM}). The results revealthat the method is very effective, convenient and quite accurateto systems of nonlinear partial differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2002
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(01)00370-3